Suppose $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Illustrate on a Venn diagram the sets:

- **a** $A = \{1, 3, 6, 8\}$ and $B = \{2, 3, 4, 5, 8\}$
- **b** $A = \{1, 3, 6, 7, 8\}$ and $B = \{3, 6, 8\}$.
- **a** $A \cap B = \{3, 8\}$

b $A \cap B = \{3, 6, 8\}, B \subseteq A$

Example 7

Self Tutor

Suppose $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Illustrate on a Venn diagram the sets $A = \{2, 4, 8\}$ and $B = \{1, 3, 5, 9\}$.

$$A \cap B = \emptyset$$

Since A and B are disjoint, their circles are separated.

Example 8

◄ Self Tutor

Shade the following regions for two intersecting sets A and B:

 $\mathbf{a} \quad A \cup B$

b $A' \cap B$

 $(A \cap B)'$

a

(in A, B, or both)

(outside A, intersected with B)

(outside $A \cap B$)

Example 9

Self Tutor

In the Venn diagram given, (3) means that there are 3 elements in the set $P\cap Q$. How many elements are there in:

 \mathbf{a} P

- **b** Q'
- $P \cup Q$
- d P, but not Q
- Q, but not P
- f neither P nor Q?

a
$$n(P) = 7 + 3 = 10$$

b
$$n(Q') = 7 + 4 = 11$$

$$n(P \cup Q) = 7 + 3 + 11 = 21$$

d
$$n(P, \text{ but not } Q) = 7$$

$$n(Q, \text{ but not } P) = 11$$

f
$$n(\text{neither } P \text{ nor } Q) = 4$$

Example 10

Self Tutor

Given n(U) = 30, n(A) = 14, n(B) = 17, and $n(A \cap B) = 6$, find:

a $n(A \cup B)$

b n(A, but not B)

We see that b=6 {as $n(A\cap B)=6$ }

$$a + b = 14$$
 {as $n(A) = 14$ }

$$b + c = 17$$
 {as $n(B) = 17$ }

$$a+b+c+d=30 \qquad \{\text{as} \ \ n(U)=30\}$$

$$\therefore$$
 $b=6$, $a=8$, and $c=11$

$$\therefore 8+6+11+d=30$$

a
$$n(A \cup B) = a + b + c = 25$$

b
$$n(A, \text{ but not } B) = a = 8$$

Example 12 Self Tutor

A platform diving squad of 25 has 18 members who dive from 10 m and 17 who divide from 5 m. How many dive from both platforms?

Let $\,T$ represent those who dive from $10~{\rm m}$ and $\,F$ represent those who dive from $5~{\rm m}.$

d=0 {as all divers in the squad must dive from at least one of the platforms}

$$a+b=18$$
 $b+c=17$ $\therefore a=8, b=10, c=7$ $a+b+c=25$

$$n(\text{both } T \text{ and } F) = n(T \cap F)$$
$$= 10$$

10 members dive from both platforms.