1. Let $\mathscr{E}=\{x: 1 \leq x<17, x \in \mathbb{N}\}$.
P, Q and R are the subsets of \mathscr{E} such that

$$
\begin{aligned}
& P=\{\text { multiples of four }\} \\
& Q=\{\text { factors of } 36\} \\
& R=\{\text { square numbers }\}
\end{aligned}
$$

(a) List the elements of
(i) \mathscr{E}
(ii) $\quad P \cap Q \cap R$.
(b) Describe in words the set $P \cup Q$.
2. Let

$$
\begin{aligned}
& \mathscr{E}=\{\text { positive integers less than } 15\} ; \\
& X=\{\text { multiples of } 2\} ; \\
& Y=\{\text { multiples of } 3\}
\end{aligned}
$$

(b) List the elements of:
(i) $\quad X \cap Y$
(ii) $\quad X \cap C Y \quad\left(C Y\right.$ is the same as Y^{\prime})
(c) Find the number of elements in the complement of $(X \cup Y)$.
3. Let $U=\left\{-4,-\frac{2}{3}, 1, \pi, 13,26.7,69,10^{33}\right\}$.
A is the set of all the integers in U.
B is the set of all the rational numbers in U.
(a) List all the prime numbers contained in U.
(b) List all the members of A.
(c) List all the members of B.
(d) List all the members of the set $A \cap B$.
4. Given \mathbb{Z} the set of integers, \mathbb{Q} the set of rational numbers, \mathbb{R} the set of real numbers.
(a) Write down an element that belongs to $\mathbb{R} \cap \mathbb{Z}$.
(b) Write down an element that belongs to $\mathbb{Q} \cap \mathbb{Z}^{\prime}$.
(c) Write down an element that belongs to \mathbb{Q}^{\prime}.
(d) Use a Venn diagram to represent the sets \mathbb{Z}, \mathbb{Q} and \mathbb{R}.
5. $\quad B$ and C are subsets of a universal set U such that $U=\{x: x \in \mathbb{Z}, 0 \leq x<10\}, B=\{$ prime numbers $<10\}, C=\{x: x \in \mathbb{Z}, 1<x \leq 6\}$.
(a) List the members of sets
(i) B
(ii) $C \cap B$
(iii) $B \cap C^{\prime}$

SOLUTIONS

1. (a) (i) $\mathscr{E}=\{1,2,3 \ldots 16\}$
(A1)
Note: If they include 17, award (A0)
(ii) $\quad P \cap Q \cap R=\{4\}$

Note: Accept answers without brackets e.g. 4
(b) $\quad P \cup Q$: the set of numbers that are either multiples of 4 or factors of 36, or everything that is in P or Q (or equivalent)
2.
(b) (i) $\quad(X \cap Y)=\{6,12\}$
(ii) $\quad X \cap C Y=\{2,4,8,10,14\}$
(A2) 3
(c) $\quad(X \cup Y)^{\prime}=C(X \cup Y)=\{1,5,7,11,13\}$
$n(X \cup Y)^{\prime}=5$
(A1) 2
3. (a) The only prime number in U is 13 .
(A2) (C2)
Note: Award (A1) for $\{1,13\}$ and (A0) for any other answer.
(b) $A=\left\{-4,1,13,69,10^{33}\right\}$
(A2) (C2)
(c) $B=\left\{-4,-\frac{2}{3}, 1,13,26.7,69,10^{33}\right\}$
(A2) (C2)
(d) $A \cap B=\left\{-4,1,13,69,10^{33}\right\}(=A)$

Note: In (b) and (d) allow (A1) for correct membership with at most one missing or one incorrect entry. A list with no set brackets is acceptable.
In (c) allow at most one missing entry for (A1) but if π is present award (A0).
4. (a) For example, 2, -3 etc
(A1) (C1)
(b) For example, $\frac{3}{5}\left(\operatorname{not} \frac{6}{1}\right)$
(A1) (C1)
(c) For example, $\sqrt{2}, \pi$
(A1) (C1)
5. (a) (i) $B=2,3,5,7$

Note: Brackets not required
(ii) $\mathrm{C} \cap \mathrm{B}=2,3,5$
(A1)(ft)
Note: Follow through only from incorrect B
$\begin{array}{lll}\text { (iii) } & \mathrm{C}^{\prime}=0,1,7,8,9 & \text { (A1)(ft) } \\ & \mathrm{B} \cup \mathrm{C}^{\prime}=0,1,2,3,5,7,8,9 & \text { (A1)(ft) }\end{array}$
Note: Award (A1) for correct C'seen. The first (A1)(ft) in (iii) can be awarded only if C was listed incorrectly and a mark was lost as a result in (a) (ii). If C was not listed and C^{\prime} is wrong, the first mark is lost. The second mark can (ft) within part (iii) as well as from (i).
(b) "If x is not a positive integer between 1 and 7, then x is not a prime number less than 10 ."
(A1)(A1)
Note: Award (A1) for both (not) statements, (A1) for correct order.

