Example 12

Self Tutor

Find the sum of 4+7+10+13+... to 50 terms.

The series is arithmetic with $u_1 = 4$, d = 3 and n = 50.

Now
$$S_n = \frac{n}{2}(2u_1 + (n-1)d)$$

$$S_{50} = \frac{50}{2}(2 \times 4 + 49 \times 3)$$
$$= 3875$$

Example 13

Self Tutor

Find the sum of -6+1+8+15+....+141.

The series is arithmetic with $u_1 = -6$, d = 7 and $u_n = 141$.

First we need to find n.

Now
$$u_n = 141$$

$$u_1 + (n-1)d = 141$$

$$-6 + 7(n-1) = 141$$

$$7(n-1) = 141$$

$$7(n-1) = 147$$

$$\therefore n-1=21$$

$$\therefore$$
 $n=22$

Using $S_n = \frac{n}{2}(u_1 + u_n)$,

$$S_{22} = \frac{22}{2}(-6 + 141)$$

$$= 11 \times 135$$

= 1485

$$= 1485$$

Example 14

An arithmetic sequence has first term 8 and common difference 2. The sum of the terms of the sequence is 170. Find the number of terms in the sequence.

The sequence is arithmetic with $u_1 = 8$ and d = 2.

Now
$$S_n = 170$$
, so $\frac{n}{2}(2u_1 + (n-1)d) = 170$
 $\therefore \frac{n}{2}(16 + 2(n-1)) = 170$
 $\therefore 8n + n(n-1) = 170$
 $\therefore n^2 + 7n - 170 = 0$

Casio fx-CG20

TI-84 Plus

TI-nspire

$$\therefore$$
 $n = -17$ or 10 {technology}

But
$$n > 0$$
, so $n = 10$

: there are 10 terms in the sequence.

Example 16

Find a formula for S_n for the first n terms of $9-3+1-\frac{1}{3}+...$

The series is geometric with $u_1 = 9$ and $r = -\frac{1}{3}$

$$S_n = \frac{u_1(1-r^n)}{1-r} = \frac{9(1-(-\frac{1}{3})^n)}{\frac{4}{3}}$$

$$S_n = \frac{27}{4}(1 - (-\frac{1}{3})^n)$$

A geometric sequence has first term 5 and common ratio 2. The sum of the first n terms of the sequence is 635. Find n.

The sequence is geometric with $u_1 = 5$ and r = 2.

$$S_n = \frac{u_1(r^n - 1)}{r - 1}$$
$$= \frac{5(2^n - 1)}{2 - 1}$$
$$= 5(2^n - 1)$$

To find n such that $S_n = 635$, we use a table of values with $Y_1 = 5 \times (2^X - 1)$:

Casio fx-CG20

TI-84 Plus

X	Υı	
1207500	5 15 35 75 155 315	
Y1=635		

TI-nspire

So,
$$S_7 = 635$$
 and :. $n = 7$.