Example 15

Self Tutor

A box contains 3 red, 2 blue and 1 yellow marble. Find the probability of getting two different colours:

- a if replacement occurs
- **b** if replacement does not occur.

To answer this question we use the tree diagram on page 278.

- P(two different colours)
 - $= P(RB \text{ or } RY \text{ or } BR \text{ or } BY \text{ or } YR \text{ or } YB) \quad \{ticked \text{ ones } \checkmark\}$

$$= \tfrac{3}{6} \times \tfrac{2}{6} + \tfrac{3}{6} \times \tfrac{1}{6} + \tfrac{2}{6} \times \tfrac{3}{6} + \tfrac{2}{6} \times \tfrac{1}{6} + \tfrac{1}{6} \times \tfrac{3}{6} + \tfrac{1}{6} \times \tfrac{2}{6}$$

P(two different colours)

$$= \frac{3}{6} \times \frac{2}{5} + \frac{3}{6} \times \frac{1}{5} + \frac{2}{6} \times \frac{3}{5} + \frac{2}{6} \times \frac{1}{5} + \frac{1}{6} \times \frac{3}{5} + \frac{1}{6} \times \frac{2}{5}$$

Example 16

Self Tutor

A bag contains 5 red and 3 blue marbles. Two marbles are drawn simultaneously from the bag. Determine the probability that at least one is red.

Alternatively, P(at least one red)

$$= 1 - P(\text{no reds})$$
 {complementary events}

$$= 1 - P(BB)$$
 and so on.

Drawing simultaneously is the same as sampling without replacement.

