

The acceleration of a falling raindrop is given by $a=g-1.96v~{\rm m\,s^{-2}}~{\rm where}~g=9.8~{\rm m\,s^{-2}}$ is the gravitational constant and v is the speed of the raindrop.

Find: a the acceleration of the raindrop before it starts falling

b the acceleration of the raindrop when its speed reaches 3 m s^{-1}

• the speed of the raindrop for which it does not accelerate.

$$a = g - 1.96v \quad \text{where} \quad g = 9.8$$
 and $v = 0$

$$a = g - 1.96v \quad \text{where} \quad g = 9.8$$
 and $v = 3$

$$\therefore a = 9.8 - 1.96 \times 0$$

$$a = 9.8 - 1.96 \times 3$$

$$a = 9.8 \text{ m s}^{-2}$$

$$a = 3.92 \text{ m s}^{-2}$$

$$a = g - 1.96v$$
 where $a = 0$ and $g = 9.8$

$$0 = 9.8 - 1.96v$$

$$1.96v = 9.8$$

$$v = \frac{9.8}{1.96} = 5 \text{ m s}^{-1}$$

Example 17

Self Tutor

Make y the subject of 3x - 7y = 22.

$$3x - 7y = 22$$

$$3x - 7y - 3x = 22 - 3x$$
 {subtracting 3x from both sides}

$$-7y = 22 - 3x$$

$$\therefore \ \ 7y = 3x - 22 \qquad \{ \text{multiplying both sides by } -1 \}$$

$$\therefore \frac{7y}{7} = \frac{3x - 22}{7} \qquad \{\text{dividing both sides by } 7\}$$

$$\therefore y = \frac{3x - 22}{7}$$

The circumference of a circle is given by $C=2\pi r$, where r is the circle's radius. Rearrange this formula to make r the subject, and hence find the radius when the circumference is:

$$2\pi r = C$$

$$\therefore \ \ r = \frac{C}{2\pi} \quad \{ \text{dividing both sides by } 2\pi \}$$

a When
$$C = 10$$
, $r = \frac{10}{2\pi} \approx 1.59$ **b** When $C = 20$, $r = \frac{20}{2\pi} \approx 3.18$

b When
$$C = 20$$
, $r = \frac{20}{2\pi} \approx 3.18$

$$\therefore$$
 the radius is about 3.18 cm.

• When
$$C = 50$$
, $r = \frac{50}{2\pi} \approx 7.96$